Piezoelectric Surgery in Implantology: A Case Report—A New Piezoelectric Ridge Expansion Technique

Tomaso Vercellotti, MD, DDS*

The purpose of this preliminary article is to present a new surgical technique that, thanks to the use of modulated-frequency piezoelectric energy scalpels, permits the expansion of the ridge and the placement of implants in single-stage surgery in positions that were not previously possible with any other method. The technique involves the separation of the vestibular osseous flap from the palatal flap and the immediate positioning of the implant between the 2 cortical walls. The case report illustrates the ridge expansion and positioning of implants step by step in bone of quality 1 to 2 with only 2 to 3 mm of thickness that is maintained for its entire height. To obtain rapid healing, the expansion space that was created for the positioning of the implant was filled, following the concepts of tissue engineering, with bioactive glass synthetic bone graft material as an osteoconductive factor and autogenous platelet-rich plasma as an osteoinductive factor. The site was covered with a platelet-rich plasma membrane. A careful evaluation of the site when reopened after 3 months revealed that the ridge was mineralized and stabilized at a thickness of 5 mm and the implants were osseointegrated. (Int J Periodontics Restorative Dent 2000;20:359–365.)

The presence of a thin edentulous ridge in the maxilla represents a clinical situation in which the positioning of endosseous implants can be complex, and at times impossible, in a single surgical operation. In fact, the minimum thickness of the implant site for the standard method, that is, with preparation of the implant site using burs, is at least 6 mm to permit the positioning of a 3.75-mm implant and the maintenance of a buccal and palatal wall of at least 1 mm.1–4

When the thickness of the ridge is reduced to about 4 mm in the most coronal position and the volume increases in the apical direction, preparation of the implant site with burs produces a dehiscence that is generally vestibular and leads to the exposure of several millimeters of the thread of the implant. This dehiscence has to be considered a defect to be treated with additional therapy,5–8 such as bone grafting and/or guided bone regeneration. This factor reduces the predictability of the treatment because of eventual membrane collapse, exposure, and infection, with incomplete reformation of the bone.9 When atrophy is

*Private Practice, Genova and Merano, Italy.

Reprint requests: Dr Tomaso Vercellotti, Via XII Ottobre 2/111, 16121 Genova, Italy.
even more severe and the ridge is less than 4 mm and it does not present an apical expansion, the standard method with burs must be abandoned because its use will bring about the complete destruction of the residual crestal bone.

As sufficient bone volume is the fundamental prerequisite for osseointegration, some authors10-13 maintain that the positioning of the implant must be preceded by a bone graft that, once established and mineralized, offers sufficient volume for the standard method. These bone-grafting methods, which are not without risk of complications during the healing period, necessitate 2 surgical operations. This doubles the time necessary to finalize the implants.

Some authors14-17 prefer to use ridge expansion techniques with immediate positioning of the implants to avoid unwanted dehiscence or fenestration that necessitates additional therapy. Osteotomy, as described by Summers,14-16 produces immediate expansion of the single implant site by the insertion of osteotomes of increasing dimension and permits positioning of the implant in thin ridges of 3 to 4 mm in thickness. This is a less traumatic method that does not remove bone from the implant site but dislocates it, increasing the volume without provoking any defect that will necessitate additional therapy. Even the bone flap technique17 permits positioning of the implants at the same time as the expansion, which consists of distancing the vestibular cortical wall from the palatal wall with the formation of an ample defect with morphologic characteristics that are extremely favorable to bone healing. In fact, the tissue repair is protected from microtraumas by the presence of the vestibular and palatal cortical walls and is comparable to a fracture rima characterized by a valid vascular supply and a rich osteoinductive cellularity, which comes from the diversion of the medulla.

Both of these expansion techniques make use of the elasticity of the bone ridge and are recommended in the presence of tender quality bone (Types 3 to 4), but they have mechanical limits when the residual bone is extremely mineralized because the mechanical expansion maneuvers can produce uncontrollable fractures. When inelastic cortical walls are separated, the eventual fracture of one of the walls produces the total detachment of the vestibular cortical bone and the consequent interruption of the vascularization process, provoking bone death and the loss of the implants.

It is the author's opinion that the traditional mechanical expansion methods cannot be used with predictable outcome in the presence of a very mineralized bone ridge as is often seen in a long-standing edentulous zone. The basis of the new piezoelectric ridge expansion technique is the use of variable-frequency piezoelectric energy as a powerful and efficacious surgical force that is able to cut bone without uncontrollable traumas. This permits the expansion of the edentulous ridge no matter what the quality of the bone, even in the case of the most mineralized.

This new method, which is presented here as a case report, permits the surgeon to obtain the expansion of a very mineralized bone ridge (quality 1) of 2 to 3 mm in thickness at the same time as the positioning of the implants, intervening where it has been impossible with other techniques. The fundamental idea on which piezoelectric surgery is based is the use of a surgical force that is able to cut bone according to the requirements of the case, with a powerful and precise energy and without excessive traumas or the risk of fracturing the ridge.

Method and materials

The patient was a man of 55 years of age. His medical history indicated arterial hypertension that was under medical treatment. His dental history included precocious loss of the left lateral incisor, canine, first and second premolars, and molar about 20 years previously. During the clinical examination, a ridge defect with reduction in the thickness of the bone, which appeared to be thin, was diagnosed. A computed tomographic (CT) scan demonstrated adequate ridge height, and the paraxial lines of the implant sites showed a thickness of less than 3 mm for the entire development of the apical crown. The bone quality was Type 1 to 2, and the cancellous residue only appeared as a line of minor radiolucency separating the vestibular cortical bone from the palatal bone (Fig 1).
Fig 1 (left) CT image permits the measurement of the thickness of the bone ridge, which is 2 to 3 mm and develops to a height of 15 mm. The bone appears to be very mineralized, of quality 1 to 2, and the cancellous bone appears as a line of minor radiolucency separating the vestibular cortical bone from the palatal bone.

Fig 2 (above) Edentulous ridge at the beginning of surgery. The thickness, measured with a periodontal probe, varies from 2.2 to 2.8 mm.

Fig 3 Edentulous ridge after a minor osteoplasty to level the surface. The flap is of mixed thickness to maintain the integrity of the periosteum on the vestibular and palatal walls.

Fig 4 Lateral view in which the mixed-thickness flap and periosteum that covers the vestibular cortical wall are both visible. The VI piezoelectric scalpel is in use.

Fig 5 Horizontal bone incision is performed in the middle of the ridge with 2 releasing incisions, one mesial and one distal.

Fig 6 Ridge after the use of piezoelectric scalpel V2: the vestibular cortical wall has been separated from the palatal wall following the bone flap technique.

The patient was treated with a local anesthetic (Septanest with adrenaline 1:200,000, Spécialités Septodont). Antibiotic therapy of 3 g of amoxicillin (Zimox, Pharmacia & Upjohn) 1 hour before intervention, 1.5 g that night, and 1 g twice a day for 5 days was prescribed. The postoperative pain was controlled with 100 mg of nimesulide (Aulin, Helsinn Healthcare) twice a day for the first and second days. For clinical plaque control, the patient was instructed to rinse his mouth for 1 minute twice a day with chlorhexidine 0.1% for 2 weeks, perform mechanical plaque control in the remaining natural teeth, and rinse with a saline solution twice a day for another 2 weeks.

Surgical technique

A mid-crestal incision was extended buccally and palatally into the sulcus to the mesial and distal sides, respectively, of the adjacent teeth, where divergent releasing incisions were extended into the vestibule. A mucoperiosteal flap of the total thickness of the summit of the bone...
The implant site was prepared with a 2-mm twist drill and a piezoelectric osteotome of 3 mm, above all on the palatal side (Fig 7), to obtain an apical implant alveolus that guaranteed the primary stability of the 2 implants; this would ensure that, once inserted, the implants would not undergo dehiscence or fenestration, but maintain their separate bone surfaces (Figs 8 and 9). Microopenings were appositely created in the vestibular and palatal bone flap with an M1 insert to...
Fig 13 Ridge is covered with a PRP membrane to protect and stabilize the graft.

Fig 14 Flaps are sutured on 2 sides with horizontal mattress stitches on the periosteum; normal stitches are used on the upper surface.

Fig 15 View of the ridge after 3 months, at reopening: it is possible to see the heads of the implants through the palatal mucosa. The implants are in a vestibular position without keratinized tissue.

Fig 16 (left) View after reopening, with healing abutments in place. The palatal flap has been positioned vestibularly to obtain 3 mm of attached gingiva.

Fig 17 (right) Second surgical phase.

Fig 18 (left) View of the ridge, which has a thickness stabilized at 5 mm with good mineralization of the biograft material and PRP gel after only 3 months. The consistency is notable and the implants stable.

Fig 19 (right) Lateral view of the expanded ridge in which it is possible to see the integrity of the cortical wall. The photo shows heavy bleeding because of 2 factors: (1) the wound was opened after only 3 months; and (2) it was necessary to use a local anesthetic with only a small percentage of adrenaline because of the patient's hypertension.
encourage medullar bleeding (Fig 10). The bone defect obtained by the separation of the bone flaps was filled with Biogran (Orthovita), a bioactive glass synthetic bone graft material, and autogenous platelet-rich plasma (PRP) gel activated with Botropase (Botropase batroxobina, AIC Ravizza Farmaceutici) (Fig 11), which was then compacted and measured with a periodontal probe; the ridge then had a thickness of 5 mm (Fig 12). The ridge was covered with a PRP membrane (Fig 13) to protect and stabilize the graft. The flaps were then sutured on 2 sides with horizontal mattress stitches (Vicryl # 4/0, Ethicon/Johnson & Johnson) (Fig 14).

Three months after the ridge expansion, the second operation was performed to discover whether the implants had taken. At this time it was possible to see the implants under the mucosa in the absence of keratinized tissue (Fig 15). A palatal incision was made to design a flap of mixed thickness that opened toward the vestibule to guarantee about 3 mm of adherent gingiva on the vestibular side of the healing abutments (Fig 16). The ridge was well mineralized with a thickness of 5 mm (Figs 17 and 18), the implants were osseointegrated, and there was no sign of dehiscence or fenestration on the vestibular side (Fig 19).

Results

During the second surgery, which was carried out after 12 weeks, the bone ridge appeared to be stabilized at a thickness of 5 mm, an increase of 2 to 3 mm. The implants were stable and perfectly osseointegrated. The bone fracture rims of the releasing incisions appeared secure. The bioactive glass with PRP appeared to be mineralized. The vestibular and palatal cortical surfaces were eutrophic and did not show signs of dehiscence or fenestration.

Discussion

This work presents a pilot study for the clinical use of piezoelectric surgery to expand thin edentulous ridges, even with a very mineralized residual bone crest. The possibility of expanding the ridge and positioning implants in single-stage surgery has been the object of continuous research in recent years. For example, the ridge expansion osteotomy of Summers permits the positioning of standard implants (3.75 mm) in ridges of about 4 mm in thickness. This technique provides for the expansion of a single implant site, making use of the characteristics of bone elasticity: the bone gradually cedes to pressure exercised from inside by the positioning of osteotomes of increasing diameter until it is able to receive an implant that stabilizes the new thickness obtained from the dislocation of the bone tissue in the vestibular and palatal directions.

The osteotomy method is very effective in bone of quality 3 to 4 because it offers better expansion and primary stability. In the case of more mineralized bone (quality 1 to 2), this method is limited by the physical nature of the material, which lacks the elasticity that can be overcome by the mechanical pressure of the osteotomes; this necessitates the use of burs and osteotomes that mostly leads to fractures that are responsible for notable dehiscence and/or fenestration and loss of the primary stability of the implants. Instead, in these situations it is possible to use the manually fractured bone flap technique, but only with a ridge of at least 3 to 4 mm in thickness on the cortical side, and only if the ridge has development with an increase in volume in the apical direction.

When bone atrophy is more severe because the edentulism is long standing, and the residual ridge is less than 3 mm, the bone is often of a very mineralized quality characterized by 2 cortical bones separated by a thin cancellous layer. The rehabilitation of such advanced anatomic situations with implants has until now been treated in 2 surgical stages, in the first of which bone is grafted to increase the volume, with implant placement in the second.

The new piezoelectric ridge expansion technique as demonstrated in this case report permits implant therapy in anatomic situations previously impossible in a single-stage surgical operation. In fact, the use of variable-frequency piezoelectric energy scalpels separates the bone flaps without the risk of accidental fracture because of excessive trauma. The case in this report was characterized by a severe anatomic difficulty that required very careful surgical attention, but it is symbolic.
of how piezoelectric surgery can be used to resolve not only simple cases but also the more complex.

Conclusions

1. Simultaneous ridge expansion and placement of implants can be obtained in single-stage surgery in an edentulous ridge that is 2 to 3 mm in thickness for its entire vertical extension.

2. The bone flap technique has been used successfully in the case of bone of quality 1 to 2 thanks to variable-frequency piezoelectric energy scalpels.

3. Stimulation of the medulla was performed with piezoelectric tips at the interface of the defect created by the bone separation, where a PRP gel and Biogran were inserted.

4. The piezoelectric ridge expansion technique is a new and promising procedure for ridge expansion in all cases, particularly in advanced ones; in fact, the periimplant healing is very predictable because it takes place in a protected and well-vascularized environment.

The author recommends the following sources for a complete understanding of the principles discussed in this article: (1) Lynch SE, Genco RJ, Marx RE (eds). Tissue Engineering: Applications in Maxillofacial Surgery and Periodontics (Chicago: Quintessence, 1999); and (2) Buser D, Dahlin C, Schenk RK (eds). Guided Bone Regeneration in Implant Dentistry (Chicago: Quintessence, 1994).

References

